Development of a Movil App for the Preoperative Evaluation of Sinus CT Scan: One Step Towards Artificial Intelligence

Main Article Content

Javier Ospina
Cristhian Forigua Díaz
Andrés Hernández Celis
Nicolás Ayobi Mendoza
Tomás Correa García
Augusto Peñaranda
Arif Janjua

Abstract

Introduction: The recent technology revolution that we have experienced has generated
extensive interest in the use of artificial intelligence (AI) in the development
of various systems and solutions in medicine. In the field of Otorhinolaryngology,
we are seeing the first efforts to take advantage of this flourishing area. Objective:
We sought to describe the development process of a mobile app created through a
collaborative effort between ENT surgeons and biomedical engineers. This app has
the intention to optimize the preoperative evaluation of paranasal sinus tomography
(CT) to improve safety and outcomes in Endoscopic Sinus Surgery (ESS). Methods:
The development of the app followed the prioritization method for MoSCoW specifications.
We used the information collected from surveys of 29 Rhinology experts
from different parts of the world, who evaluated anatomical variants on sinus CT
scans. Two regression models were used to predict difficulty and risk using statistical
learning. Conclusion: Via statistical modelling, we have developed a user-friendly
tool that will ideally help surgeons assess the risk and difficulty of ESS based on
the pre-operative CT scan of the sinuses. This is an exercise that demonstrates the
efficacy of the collaborative efforts between surgeons and engineers to leverage AI
tools and promote better solutions for our patients.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Ospina J, Forigua Díaz C, Hernández Celis A, Ayobi Mendoza N, Correa García T, Peñaranda A, Janjua A. Development of a Movil App for the Preoperative Evaluation of Sinus CT Scan: One Step Towards Artificial Intelligence. Acta otorrinolaringol cir cabeza cuello [Internet]. 2022Jun.30 [cited 2024Nov.21];50(2):124-32. Available from: https://revista.acorl.org.co/index.php/acorl/article/view/687
Section
Trabajos Originales
Author Biography

Javier Ospina, Instituto Nacional de Cancerología, Bogotá, ColombiaFundación Santa Fe de Bogotá, Bogotá, Colombia

Otorrinolaringólogo de la Universidad Javeriana, Subespecialización en Rinología y Base de Cráneo de la Universidad de British Columbia, Vancouver, Canadá.

Adscrito a la Fundación Santa Fe de Bogotá, Colombia

Instituto Nacional de Cancerología, Bogotá, Colombia.

References

Jotterand F, Bosco C. Artificial Intelligence in Medicine: A Sword of Damocles? J Med Syst. 2022;46(1):1-5. doi:

1007/s10916-021-01796-7

Crowson MG, Ranisau J, Eskander A, et al. A contemporary review of machine learning in otolaryngology–head and neck

surgery. Laryngoscope. 2020;130(1):45-51. doi: 10.1002/lary.27850

Dapre.presidencia.gov.co. Marco ético para la inteligencia artificial en Colombia [Internet]. Gobierno de Colombia. 2021

[citado falta la fecha]. Disponible en: https://dapre.presidencia. gov.co/TD/MARCO-ETICO-PARA-LA-INTELIGENCIAARTIFICIAL-EN-COLOMBIA-2021.pdf

Chowdhury NI, Smith TL, Chandra RK TJ. Automated classification of osteomeatal complex inflammation on CT

using convolutional neural networks. Int Forum Allergy Rhinol.2019;176(5):139-148. doi: 10.1002/alr.22196.

Liu GS, Bs AY, Ba DK, et al. Deep learning classification of inverted papilloma malignant transformation using 3D

convolutional neural networks and magnetic resonance imaging. 2022;(September 2021):1-9. doi: 10.1002/alr.22958

Spielman DB, Gudis DA. How I Do It Preoperative Sinus Computed Tomography Scan Review Checklist.

;(December):706-708. doi: 10.1002/lary.28444

Kagen S, Garland A. Asthma and Allergy Mobile Apps in 2018.Curr Allergy Asthma Rep. 2019;19(1):6. doi: 10.1007/s11882-019-0840-z

Dolin RH, Alschuler L, Boyer S, Beebe C, Behlen FM, Biron PV, et al. HL7 Clinical Document Architecture, Release 2. J

Am Med Inform Assoc. 2006;13(1):30-9. doi: 10.1197/jamia.M1888

Goossen W, Langford LH. Exchanging care records using HL7 V3 care provision messages. J Am Med Inform Assoc.

;21(e2):e363-8. doi: 10.1136/amiajnl-2013-002264

Dolin RH, Alschuler L, Beebe C, Biron PV, Boyer SL, Essin D, et al. The HL7 Clinical Document Architecture. J Am Med Inform Assoc. 2001;8(6):552-69. doi: 10.1136/jamia.2001.0080552

Haynes AB, Weiser TG, Berry WR, Lipsitz SR. A Surgical Safety Checklist to Reduce Morbidity and Mortality in a Global

Population. N Engl J Med. 2010;360(5):491-499. doi: 10.1056/NEJMsa0810119

Tewfik MA, Wormald PJ. Ten Pearls for Safe Endoscopic SinusSurgery. Otolaryngol Clin North Am. 2010;43(4):933-944. doi:10.1016/j.otc.2010.04.017

O’Brien WT, Hamelin S, Weitzel EK. The preoperative sinus CT: Avoiding a “cLOSE” call with surgical complications.

Radiology. 2016;281(1):10-21. doi: 10.1148/radiol.2016152230

García-Chabur MA, Peñaranda D, Pinzón M, et al. Lista de chequeo preoperatorio para la cirugía endoscópica de hipófisis Preoperative checklist for endoscopic pituitary surgery. Acta Otorrinolaringol Cirugía Cabeza y Cuello. 2020:322-330. doi:10.37076/acorlv48i4.562

Liquid-state.com. Digital Health App Trends to Consider for 2018 [Internet]. Digital Health Trends. 2018 [citado falta la

fecha]. Disponible en: https://liquid-state.com/digital-healthapp-trends-2018/

Most read articles by the same author(s)