Virtual screening of secondary metabolites of Origanum vulgare and marjoram against NaV1.7 as promising anesthetics associated with the auditory neurosensory pathway
Main Article Content
Abstract
Introduction: In general, oregano is a medicinal plant used in rural areas of the colombian
Caribbean coast to treat conditions of the respiratory system and external ear due to its potential anti-inflammatory, analgesic and antiseptic effect, however, it has not been validated through clinical trials. Objective: To carry out a virtual screening based on molecular coupling of secondary metabolites identified in Origanum vulgare and marjoram against the Nav1.7 receptor to evaluate the potential anesthetic effect at the level of the external ear. Method: This is an in-silico study with a virtual molecular docking screening approach, for which the AutoDock Vina
software was used and the Swiss Institute of Bioinformatics (http://www.sib.swiss) online tool SwissADME was used for pharmacokinetic predictions. Additionally, the in-silico toxicity of the molecules was evaluated using the GUSAR-Online server. Results: Of the 99 molecules that were evaluated by molecular coupling, it was shown that the highest affinities with respect to the Nav1.7 channel were chlorogenic acid, rutin, luteolin, luteoside and apigenin, where affinity energies were presented with the binding site in the central pore of the channel at values between -5.40 ±
0.00 to -5.57 ± 0.06 kcal/mol, which according to the ADMET and GUSAR analysis,only chlorogenic acid, luteolin and apigenin are good potential candidates for anesthetic drugs complying with the 5 rules of Lipinsky
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Este artículo es publicado por la Revista Acta de Otorrinolaringología & Cirugía de Cabeza y Cuello.
Este es un artículo de acceso abierto, distribuido bajo los términos de la LicenciaCreativeCommons Atribución-CompartirIgual 4.0 Internacional.( http://creativecommons.org/licenses/by-sa/4.0/), que permite el uso no comercial, distribución y reproducción en cualquier medio, siempre que la obra original sea debidamente citada.
eISSN: 2539-0856
ISSN: 0120-8411
References
Soria N, Ramos P. Uso de plantas medicinales en la Atención Primaria de Salud en Paraguay: algunas consideraciones
para su uso seguro y eficaz. Mem. Inst. Invest. Cienc. Salud. 2015;13(2):8-17.
Bouyahya A, Chamkhi I, Benali T, Guaouguaou FE, Balahbib A, El Omari N, et al. Traditional use, phytochemistry, toxicology, and pharmacology of Origanum majorana L. J Ethnopharmacol.2021;265:113318. doi:10.1016/j.jep.2020.113318
Rezaie A, Jafari B, Mousavi G, Nazeri M, Ebadi A, Ahmadeh C, et al. Comparative Study of Sedative, Pre-Anesthetic and
Anti-Anxiety Effect of Origanum majorana Extract with Diazepam on Rats. Res J Biol Sci. 2011;6(11):611-4. doi: 10.3923/rjbsci.2011.611.614
Chuang LT, Tsai TH, Lien TJ, Huang WC, Liu JJ, Chang H, et al. Ethanolic Extract of Origanum vulgare Suppresses
Propionibacterium acnes-Induced Inflammatory Responses in Human Monocyte and Mouse Ear Edema Models. Molecules.
;23(8):1987. doi: 10.3390/molecules23081987
Fryatt AG, Vial C, Mulheran M, Gunthorpe MJ, Grubb BD. Voltage-gated sodium channel expression in rat spiral ganglion
neurons. Mol Cell Neurosci. 2009;42(4):399-07. doi: 10.1016/j.mcn.2009.09.001
Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem Substance and Compound databases. Nucleic
Acids Res. 2016;44(D1):D1202-13. doi: 10.1093/nar/gkv951
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J
Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33
Ahuja S, Mukund S, Deng L, Khakh K, Chang E, Ho H, et al. Structural basis of Nav1.7 inhibition by an isoform-selective
small-molecule antagonist. Science. 2015;350(6267):aac5464. doi: 10.1126/science.aac5464
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: Homology modelling
of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–303. doi: 10.1093/nar/gky427
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function,
efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61. doi: 10.1002/jcc.21334
Laskowski RA, Swindells MB. LigPlot+: multiple ligandprotein interaction diagrams for drug discovery. J Chem Inf
Model. 2011;51(10):2778-86. doi: 10.1021/ci200227u
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and
medicinal chemistry friendliness of small molecules. Sci Rep.2017;7:42717. doi: 10.1038/srep42717
Lagunin A, Zakharov A, Filimonov D, Poroikov V. QSAR Modelling of Rat Acute Toxicity on the Basis of PASS
Prediction. Mol Inform. 2011;30(2-3):241-50. doi: 10.1002/minf.201000151
Afarineshe Khaki MR, Pahlavan Y, Sepehri G, Sheibani V, Pahlavan B. Antinociceptive Effect of Aqueous Extract of
Origanum vulgare L. in Male Rats: Possible Involvement of the GABAergic System. Iran J Pharm Res. 2013;12(2):407-13.
De Falco E, Mancini E, Roscigno G, Mignola E, Taglialatela- Scafati O, Senatore F. Chemical composition and biological
activity of essential oils of Origanum vulgare L. subsp. vulgare L. under different growth conditions. Molecules. 2013;18(12):14948-60. doi: 10.3390/molecules181214948
Lombrea A, Antal D, Ardelean F, Avram S, Pavel IZ, Vlaia L, et al. A Recent Insight Regarding the Phytochemistry and
Bioactivity of Origanum vulgare L. Essential Oil. Int J Mol Sci. 2020;21(24):9653. doi: 10.3390/ijms21249653
Tsuchiya H. Anesthetic Agents of Plant Origin: A Review of Phytochemicals with Anesthetic Activity. Molecules. 2017 Aug
;22(8):1369. doi: 10.3390/molecules22081369
Taamalli A, Arráez-Román D, Abaza L, Iswaldi I, Fernández- Gutiérrez A, Zarrouk M, et al. LC-MS-based metabolite
profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana.
Phytochem Anal. 2015;26(5):320-30. doi: 10.1002/pca.2566
Mahmoudian-Sani MR, Hashemzadeh-Chaleshtori M, Asadi-Samani M, Luther T. A Review of Medicinal Plants for the
Treatment of Earache and Tinnitus in Iran. Int Tinnitus J.2017;21(1):44-49. doi: 10.5935/0946-5448.20170009
Gómez-Estrada H, Díaz-Castillo F, Franco-Ospina L, Mercado- Camargo J, Guzmán-Ledezma J, Medina JD, et al. Folk
medicine in the northern coast of Colombia: an overview. J Ethnobiol Ethnomed. 2011;7:27. doi: 10.1186/1746-4269-7-27
Cardona LM, Cardona LM, Díaz APS, Corrales JAP. Uso de plantas medicinales en enfermedades otorrinolaringológicas.
Rev Cuba Otorrinolaringol y Cirugía Cabeza y Cuello.2020;4(3):1-13.
Silva FV, Guimarães AG, Silva ER, Sousa-Neto BP, Machado FD, Quintans-Júnior LJ, et al. Anti-inflammatory and anti-ulcer
activities of carvacrol, a monoterpene present in the essential oil of oregano. J Med Food. 2012;15(11):984-91. doi: 10.1089/
jmf.2012.0102
Ebani VV, Nardoni S, Bertelloni F, Najar B, Pistelli L, Mancianti F. Antibacterial and Antifungal Activity of Essential
Oils against Pathogens Responsible for Otitis Externa in Dogs and Cats. Medicines (Basel). 2017;4(2):21. doi: 10.3390/
medicines4020021
Ghelardini C, Galeotti N, Mazzanti G. Local anaesthetic activity of monoterpenes and phenylpropanes of essential oils.
Planta Med. 2001;67(6):564-6. doi: 10.1055/s-2001-16475
da Cunha JA, Scheeren C, Salbego J, Gressler LT, Madaloz LM, Bandeira Junior G, et al. Essential oils of Cunila galioides
and Origanum majorana as anesthetics for Rhamdia quelen: Efficacy and effects on ventilation and ionoregulation. Neotrop Ichthyol. 2017;15(1):e160076. doi: 10.1590/1982-0224-20160076
Kakita K, Tsubouchi H, Adachi M, Takehana S, Shimazu Y, Takeda M. Local subcutaneous injection of chlorogenic acid
inhibits the nociceptive trigeminal spinal nucleus caudalis neurons in rats. Neurosci Res. 2018;134:49-55. doi: 10.1016/j.
neures.2017.11.009