Risk of malignancy evaluation through data mining technic in patients with thyroid nodules with cytology study Bethesda IV

Main Article Content

Rogers Leonardo Baquero G.
Esteban Diazgranados G.
Elizabeth León G.
Juan de Francisco Zambrano
Álvaro Eduardo Calixto G.
Andrés Felipe Rey
Cesar Alfonso Palencia
Juan Fernando Castañeda
Erika León G.

Abstract

Introduction: In the health field, each decision represents data, and data mining techniques have begun to be a promising methodology for the analysis of this information, especially in the design of predictive models. Methods: Analytical observational study; patients older than 15 years with a report of Bethesda IV after a fine needle aspiration biopsy that undergoing surgical management at the Hospital de San José in Bogotá. The data collected from those patients were included in three groups: sociodemographic-clinical information, cytology findings, and ultrasound
reports. Analysis was performed using three technics: Naive Bayes, decision trees, and neural networks. Weka tool version 3.8.2 was used. Results: 195 patients out of 427, had a thyroid carcinoma pathology (45.6%). Better results were evidenced using cross-validation (10 fold) compared with a partition (66%), the Bayes technique had
better results of correct classification (91.1%), than the tree technique (87.8%) and neural network (88.2%). Conclusions: The use of the Naive Bayes technique shows an important accuracy to determine the prediction of risk of malignancy in patients
with a Bethesda IV cytological study, which would allow an adequate guide to the surgical management of patients.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Baquero G. RL, Diazgranados G. E, León G. E, Zambrano J de F, Calixto G. Álvaro E, Rey AF, Palencia CA, Castañeda JF, León G. E. Risk of malignancy evaluation through data mining technic in patients with thyroid nodules with cytology study Bethesda IV. Acta otorrinolaringol cir cabeza cuello [Internet]. 2021Mar.31 [cited 2024Nov.24];50(1):36 - 44. Available from: https://revista.acorl.org.co/index.php/acorl/article/view/618
Section
Trabajos Originales

References

Kumar R, Shaikh B, Chandio A, Ahmed J. Role of health management information system in disease reporting at a rural

district of Sindh. Pak J Public Health. 2012;2(2):10-2.

Castro M. Las técnicas de modelización estadística en la investigación educativa: minería de datos, modelos de

ecuaciones estructurales y modelos jerárquicos lineales. Rev Esp Pedag. 2012;251:131-48.

Stilou S, Bamidis PD, Maglaveras N, Pappas C. Mining association rules from clinical databases: An intelligent

diagnostic process in healthcare. Stud Health Technol Inform.2001;84(2):1399-403.

Salazar J, Espinoza C, Mindiola A, Bermúdez V. Data mining and endocrine diseases: A new way to classify? Arch Med Res.2018;49(3):213-5. doi: 10.1016/j.arcmed.2018.08.005.

Kim T, Zabaneh F, Holmes J, Disrude L, Price M, Gentry L. A practical data mining method to link hospital microbiology

and an infection control database. Am J Infect Control.2008;36(3):S18-S20. doi: 10.1016/j.ajic.2007.05.010.

Izzo CM, Prescott J, Peden A, Brown JF, Valencia F. Use of a data mining system to improve the process of public health

reporting in a large teaching facility. Am J Infect Control. 2008;36(5):E186. doi: 10.1016/j.ajic.2008.04.216.

Michie D, Spiegelhalter DJ, Taylor CC, Campbell J (editores).Machine learning, neural and statistical classification. Upper

Saddle River, NJ, EE. UU.: Ellis Horwood. 1994.

Koh HC, Tan G. Data mining applications in healthcare. J Healthc Inf Manag. 2005;19(2):64-72.

Kotsiantis S, Pierrakeas C, Pintelas P. Preventing student dropout in distance learning using machine learning techniques.Springer. 2003. p. 267-74.

Schreiner AM, Yang GC. Adenomatoid nodules are the main cause for discrepant histology in 234 thyroid fine-needle

aspirates reported as follicular neoplasm. Diagn Cytopathol.2012;40(5):375-9. doi: 10.1002/dc.21499.

Conzo G, Calò PG, Gambardella C, Tartaglia E, Mauriello C, Della Pietra C, et al. Controversies in the surgical management of thyroid follicular neoplasms. Retrospective analysis of

patients. Int J Surg. 2014;12(1):S29-34. doi: 10.1016/j.ijsu.2014.05.013.

Herrera F, Redondo K, Osorio C, Grice J, Fernández A. Utilidad de la citología obtenida mediante aspiración con aguja fina en el diagnóstico de las neoplasias foliculares de la glándula tiroides en la E.S.E Hospital Universitario del Caribe: un estudio retrospectivo. Rev Colomb Cir. 2015;30:12-7. doi: 10.30944/issn.2011-7582.

Jo VY, Stelow EB, Dustin SM, Hanley KZ. Malignancy risk for fine-needle aspiration of thyroid lesions according to

the Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol. 2010;134(3):450-6. doi: 10.1309/

AJCP5N4MTHPAFXFB.

Osorio C, Fernández A, Herrera K, Marrugo Á, Ensuncho C, Redondo K, et al. Sensibilidad y especificidad de la citología

obtenida mediante aspiración con aguja fina en el diagnóstico de las neoplasias foliculares de la glándula tiroides: un estudio prospectivo. Rev Esp Patol. 2016;49(3):144-50. doi: 10.1016/j.patol.2016.01.005.

Kuru B, Kefeli M. Risk factors associated with malignancy and with triage to surgery in thyroid nodules classified as Bethesda category IV (FN/SFN). Diagn Cytopathol. 2018;46(6):489-94. doi: 10.1002/dc.23923.

Lee SH, Baek JS, Lee JY, Lim JA, Cho SY, Lee TH, et al. Predictive factors of malignancy in thyroid nodules with a

cytological diagnosis of follicular neoplasm. Endocr Pathol.2013;24(4):177-83. doi: 10.1007/s12022-013-9263-x.

Yassa L, Cibas ES, Benson CB, Frates MC, Doubilet PM,Gawande AA, et al. Long-term assessment of a multidisciplinary

approach to thyroid nodule diagnostic evaluation. Cancer.2007;111(6):508-16. doi: 10.1002/cncr.23116.

Guth S, Theune U, Aberle J, Galach A, Bamberger CM.Very high prevalence of thyroid nodules detected by high

frequency (13 MHz) ultrasound examination. Eur J Clin Invest.2009;39(8):699-706. doi: 10.1111/j.1365-2362.2009.02162.

Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, HegedüsL, et al. American Asociation of Clinical Endocrinologists,

American College of Endocrinology, and Associazione Medici Endocrinologi Medical guidelines for clinical practice for the

diagnosis and management of thyroid nodules--2016 update. Endocr Pract. 2016;22(5):622-39. doi: 10.4158/EP161208.GL.

Abdul-Jabar HB, Lynn J. The surgical management of thyroid cancer. Nucl Med Commun. 2004;25(9):869-72. doi:

1097/00006231-200409000-00002.

Rodríguez González H, Pava Marín R, Castaño Herrera LF, Valencia García LV, Pava Ripoll A. Evaluación de la

precisión diagnóstica de la punción aspiración con aguja fina en pacientes con nódulo tiroideo. Biosalud. 2017;16(1):19-29.

doi: 10.17151/biosa.2017.16.1.3.

Mejía M, Rivera Delgado M, Bonilla J, Melo M, Rojas García W. Factores asociados a histopatología final benigna en

pacientes con biopsia por aspiración con aguja fina clasificados como Bethesda en IV-V-VI en Hospital de San José. Bogotá:

Fundación Universitaria de Ciencias de la Salud. 2017.

Park SY, Hahn SY, Shin JH, Ko EY, Oh YL. The diagnostic performance of thyroid US in each category of the Bethesda

system for reporting thyroid cytopathology. PLoS One. 2016;11(6):e0155898. doi: 10.1371/journal.pone.0155898.

Razia S, Narasinga MR. Machine learning techniques for thyroid disease diagnosis - A review. Indian J Sci Technol.

;9(28):1-9. doi: 10.17485/ijst/2016/v9i28/93705.

Boas FE, Liu LY, Kamaya A, Desser TS, Rubin DL. Estimating the probability of malignancy of thyroid nodules using adjusted naïve Bayes. 2012. Disponible en: http://www.edboas.com/calc/thyroid.pdf