Fisiología coclear

Contenido principal del artículo

Leonardo Elías Ordóñez Ordóñez
Angela María Mojica Rojas

Resumen

El interés por la fisiología y patología del sistema auditivo ha crecido en los últimos
años, y no sin razón, en Estados Unidos grados variables de hipoacusia afectan al doble de la población afectada por ceguera. El sistema auditivo presenta algunas
características fascinantes en su funcionamiento, la cóclea de los mamíferos, por ejemplo, es capaz de responder a vibraciones de tan solo ±0,3nm, el diámetro de un átomo y de detectar estímulos en humanos de hasta 20 KHz. El propósito del
órgano de la audición es transformar la energía sonora en un impulso eléctrico que
se transmite por el nervio coclear hacia el Sistema Nervioso Central. Esta revisión
describe la fisiología coclear haciendo énfasis en la correlación morfofisiológica subyacente, tanto a nivel celular como molecular, intentando seguir la secuencia temporal de eventos mediante la cual un estímulo acústico se traduce en una respuesta neural.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
1.
Ordóñez Ordóñez LE, Mojica Rojas AM. Fisiología coclear. Acta otorrinolaringol cir cabeza cuello [Internet]. 16 de enero de 2017 [citado 21 de noviembre de 2024];43(3):187-210. Disponible en: https://revista.acorl.org.co/index.php/acorl/article/view/29
Sección
Revisiones

Citas

Hudspeth AJ. How hearing happens. Neuron. 1997;19(5): 947-950.

Gillespie PG, Corey DP. Myosin and adaptation by hair cells. Neuron. 1997;19(5):955-958.

Spector AA, Popel AS, Eatock RA, Brownell WE. Mechanosensitive channels in the lateral wall can enhance the cochlear outer hair cell frequency response. Ann Biomed Eng. 2005;33(8):991-1002.

Guinan JJ Jr. How are inner hair cells stimulated? Evidence for multiple mechanical drives. Hear Res. 2012;292(1):35-50.

Guinan JJ Jr. New Insights into Cochlear Amplification. Biophys J. 2013;105(4):839-840.

Forge A, Wright T. The molecular architecture of the inner ear. Br Med Bull.2002;63(1):5-24.

Robertson NG, Morton, CC. Beginning of a molecular era in hearing and deafness. Clin Genet. 1999;57(s1):39-49.

Carmody RF. The temporal bone. En: Zimmerman RA, Gibby WA, Carmody RF, editores. Neuroimaging. New York: Springer; 2000. 1159-1194.

Ashmore JF. The GL Brown Prize Lecture. The cellular machinery of the cochlea. Exp Physiol. 1994;79(2):113-134.

Fukazawa T, Ishida K, Murai Y. A micromechanical model of the cochlea with radial movement of the tectorial membrane. Hear Res. 1999;137(1):59-67.

Ashmore JF, Mammano F. Can you still see the cochlea for the molecules?. Curr Opin Neurobiol. 2001;11(4):449-454.

Brownell WE. Outer hair cell electromotility and otoacoustic emissions. Ear Hear.1990;11(2):82.

Dallos P, He DZ, Lin X, Sziklai I, Mehta S, Evans BN. Acetylcholine, outer hair cell electromotility, and the cochlear amplifier. J Neurosci. 1997;17(6):2212-2226.

Liao Z, Popel AS, Brownell WE, Spector AA. High-frequency force generation in the constrained cochlear outer hair cell: a model study. J Assoc Res Otolaryngol. 2005;6(4):378-389.

Glueckert R, Pfaller K, Kinnefors A, Schrott-Fischer A, Rask-Andersen H. High resolution scanning electron microscopy of the human organ of Corti: A study using freshly fixed surgical specimens. Hear Res. 2005;199(1):40-56.

Jaramillo F. Signal transduction in hair cells and its regulation by calcium. Neuron. 1995;15(6):1227–1230.

Mountain DC, Cody AR. Multiple modes of inner hair cell stimulation. Hear Res. 1999;132(1):1-14.

Brownell WE, Spector AA, Raphael RM, Popel AS. Microand nanomechanics of the cochlear outer hair cell. Annu Rev Biomed Eng. 2001;3:169-194.

Oghalai JS, Holt JR, Nakagawa T, Jung TM, Coker NJ, Jenkins HA, et al. Ionic currents and electromotility in inner ear hair cells from humans. J Neurophysiol. 1998;79(4):2235-2239.

Santos-Sacchi J, Shen W, Zheng J, Dallos P. Effects of membrane potential and tension on prestin, the outer hair cell lateral membrane motor protein. J Physiol. 2001;531(3):661-666.

Wang J, Powers NL, Hofstetter P, Trautwein P, Ding D, Salvi R. Effects of selective inner hair cell loss on auditory nerve fiber threshold, tuning and spontaneous and driven discharge rate. Hear Res.1997;107(1):67-82.

Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P. Prestin is the motor protein of cochlear outer hair cells. Nature. 2000;405(6783):149-155.

Chertoff ME, Brownell WE. Characterization of cochlear outer hair cell turgor. Am J Physiol. 1994;266(2):C467-C479.

Cho A. What’s shakin’ in the ear?. Science. 2000;288(5473):1954-1955.

Lo WW, Daniels DL, Chakeres DW, Linthicum FH Jr, Ulmer JL, Mark LP, Swartz JD. The endolymphatic duct and sac. AJNR Am J Neuroradiol. 1997; 18(5):881-7.

Jaramillo F, Wiesenfeld K. Mechanoelectrical transduction assisted by Brownian motion: a role for noise in the auditory system. Nat Neurosci. 1998;1(5):384-388.

Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ. Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am J Hum Genet. 2001;69(1):25-34.

Di Palma F, Holme RH, Bryda EC, Belyantseva IA, Pellegrino R, Kachar B, Noben-Trauth K. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat Genet. 2001;27(1):103-107.

Goutman JD, Elgoyhen AB, Gómez-Casati ME. Cochlear hair cells: The sound-sensing machines. FEBS Lett. 2015;589(22):3354-3361.

Pan B, Holt JR. The molecules of sensory transduction in hair cell. Curr Opin Neurobiol. 2015;34:165-71.

Ahmed ZM, Goodyear R, Riazuddin S, Lagziel A, Legan PK, Behra M, et al. The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. J Neurosci. 2006;26(26):7022-7034.

Zhao B, Müller U. The elusive mechanotransduction machinery of hair cells. Curr Opini Neurobiol. 2015;34:172-179.

Glueckert R, Pfaller K, Kinnefors A, Rask-Andersen H, Schrott-Fischer A. Ultrastructure of the normal human organ of Corti. New anatomical findings in surgical specimens. Acta Otolaryngol. 2005;125(5):534-539.

Oghalai JS, Tran TD, Raphael RM, Nakagawa T, Brownell WE. (1999). Transverse and lateral mobility in outer hair cell lateral wall membranes. Hear Res. 1999;135(1):19-28.

Oghalai JS, Patel AA, Nakagawa T, Brownell WE. Fluorescence-imaged microdeformation of the outer hair cell lateral wall. J Neurosci.1998;18(1):48-58.

Lue AJ, Brownell WE. Salicylate induced changes in outer hair cell lateral wall stiffness. Hear Res.1999;135(1):163-168.

Marcotti W, Johnson SL, Holley MC, Kros CJ. Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J Physiol. 2003;548(2):383-400.

He DZ, Dallos P. Somatic stiffness of cochlear outer hair cells is voltage-dependent. Proc Nati Acad Sci U S A. 1999;96(14): 8223-8228.

Dong W, Olson ES. Detection of cochlear amplification and its activation. Biophys J. 2013;105(4):1067-1078.

Zidanic M, Brownell WE. Fine structure of the intracochlear potential field. II. Tone-evoked waveforms and cochlear microphonics. J Neurophysiol. 1992;67(1):108-124.

Weber PC, Cunningham CD, Schulte BA. Potassium recycling pathways in the human cochlea. Laryngoscope. 2001;111(7):1156-1165.

Liang F, Niedzielski A, Schulte BA, Spicer SS, Hazen-Marti DJ, Shen Z. A voltage-and Ca2+-dependent big conductance K channel in cochlear spiral ligament fibrocytes. Pflügers Arch. 2003;445(6).683-692.

Lee JH, Marcus DC. Endolymphatic sodium homeostasis by Reissner’s membrane. Neurosci. 2003;119(1):3-8.

Zidanic M, Brownell WE. Fine structure of the intracochlear potential field. I. The silent current. Biophys J. 1990;57(6):1253.

Spicer SS, Schulte BA. Spiral ligament pathology in quietaged gerbils. Hear Res. 2002;172(1):172-185.

Spicer SS, Schulte BA. Evidence for a medial K+ recycling pathway from inner hair cells. Hear Res. 1998;118(1):1-12.

Spiess AC, Lang H, Schulte BA, Spicer SS, Schmiedt RA. Effects of gap junction uncoupling in the gerbil cochlea. Laryngoscope. 2002;112(9):1635-1641.

Yeh TH, Herman P, Tsai MC, Tran Ba Huy P, Van Den Abbeele T. A cationic nonselective stretch-activated channel in the Reissner’s membrane of the guinea pig cochlea. Am J Physiol. 1998;274(3):C566-C576.

Swartz JD, Daniels DL, Harnsberger HR, Ulmer JL, Shaffer KA, Mark LP. Hearing, II: the retrocochlear auditory pathway. AJNR Am J Neuroradiol. 1996;17(8):1479-1481.

Ashmore J, Gale J. The cochlea. Curr Biol. 2000;10(9):R325-R327.

Lane JI, Witte RJ, Henson OW, Driscoll CL, Camp J, Robb RA. Imaging microscopy of the middle and inner ear: Part II: MR microscopy. Clin Anat. 2005;18(6):409-415.

Lane JI, Witte RJ, Driscoll CL, Camp JJ, Robb RA. Imaging microscopy of the middle and inner ear: Part I: CT microscopy. Clin Anat. 2004;17(8):607-612.

Ramanathan K, Michael TH, Jiang GJ, Hiel H, Fuchs PA. A molecular mechanism for electrical tuning of cochlear hair cells. Science. 1999;283(5399):215-217.